248 research outputs found

    Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis

    Full text link
    New measurements of high-lying even parity 6sns1 ⁣S06sns\, {}^1 \! S_0 and 6snd3,1 ⁣D26snd\,{}^{3,1}\!D_2 levels of neutral 174^{174}Yb are presented in this paper. Spectroscopy is performed by a two-step laser excitation from the ground state 4f146s21 ⁣S04f^{14}6s^2 \, {}^1 \! S_0, and the Rydberg levels are detected by using the field ionization method. Additional two-photon microwave spectroscopy is used to improve the relative energy accuracy where possible. The spectroscopic measurements are complemented by a multichannel quantum defect theory (MQDT) analysis for the J=0 and the two-coupled J=2 even parity series. We compare our results with the previous analysis of Aymar {\it{et al}} \cite{Aymar_1980} and analyze the observed differences. From the new MQDT models, a revised value for the first ionization limit I6s=50443.07041(25)I_{6s}=50443.07041(25) cm1^{-1} is proposed.Comment: 15 pages, 3 figure

    Revealing Superfluid--Mott-Insulator Transition in an Optical Lattice

    Get PDF
    We study (by an exact numerical scheme) the single-particle density matrix of 103\sim 10^3 ultracold atoms in an optical lattice with a parabolic confining potential. Our simulation is directly relevant to the interpretation and further development of the recent pioneering experiment by Greiner et al. In particular, we show that restructuring of the spatial distribution of the superfluid component when a domain of Mott-insulator phase appears in the system, results in a fine structure of the particle momentum distribution. This feature may be used to locate the point of the superfluid--Mott-insulator transition.Comment: 4 pages (12 figures), Latex. (A Latex macro is corrected

    Superfluids and Supersolids on Frustrated 2D Lattices

    Full text link
    We study the ground state of hard-core bosons with nearest-neighbor hopping and nearest-neighbor interactions on the triangular and Kagom\'e lattices by mapping to a system of spins (S=12S={1\over2}), which we analyze using spin-wave theory. We find that the both lattices display superfluid and supersolid (a coexistence of superfluid and solid) order as the parameters and filling are varied. Quantum fluctuations seem large enough in the Kagom\'e system to raise the interesting possibility of a disordered ground state.Comment: Latex format, 24 figures available by email upon request. Submitted to Physical Review

    Molecular Analysis of a Leprosy Immunotherapeutic Bacillus Provides Insights into Mycobacterium Evolution

    Get PDF
    BACKGROUND: Evolutionary dynamics plays a central role in facilitating the mechanisms of species divergence among pathogenic and saprophytic mycobacteria. The ability of mycobacteria to colonize hosts, to proliferate and to cause diseases has evolved due to its predisposition to various evolutionary forces acting over a period of time. Mycobacterium indicus pranii (MIP), a taxonomically unknown 'generalist' mycobacterium, acts as an immunotherapeutic against leprosy and is approved for use as a vaccine against it. The large-scale field trials of this MIP based leprosy vaccine coupled with its demonstrated immunomodulatory and adjuvant property has led to human clinical evaluations of MIP in interventions against HIV-AIDS, psoriasis and bladder cancer. MIP, commercially available as 'Immuvac', is currently the focus of advanced phase III clinical trials for its antituberculosis efficacy. Thus a comprehensive analysis of MIP vis-à-vis evolutionary path, underpinning its immanent immunomodulating properties is of the highest desiderata. PRINCIPAL FINDINGS: Genome wide comparisons together with molecular phylogenetic analyses by fluorescent amplified fragment length polymorphism (FAFLP), enterobacterial repetitive intergenic consensus (ERIC) based genotyping and candidate orthologues sequencing revealed that MIP has been the predecessor of highly pathogenic Mycobacterium avium intracellulare complex (MAIC) that did not resort to parasitic adaptation by reductional gene evolution and therefore, preferred a free living life-style. Further analysis suggested a shared aquatic phase of MAIC bacilli with the early pathogenic forms of Mycobacterium, well before the latter diverged as 'specialists'. CONCLUSIONS/SIGNIFICANCE: This evolutionary paradigm possibly affirms to marshall our understanding about the acquisition and optimization of virulence in mycobacteria and determinants of boundaries therein

    On the Coexistence of Diagonal and off-Diagonal Long-Range Order, a Monte Carlo Study

    Full text link
    The zero temperature properties of interacting 2 dimensional lattice bosons are investigated. We present Monte Carlo data for soft-core bosons that demonstrate the existence of a phase in which crystalline long-range order and off-diagonal long-range order (superfluidity) coexist. We comment on the difference between hard and soft-core bosons and compare our data to mean-field results that predict a larger coexistence region. Furthermore, we determine the critical exponents for the various phase transitions.Comment: 7 pages and 8 figures appended in postscript, KA-TFP-93-0

    Multilocus sequence typing method for identification and genotypic classification of pathogenic Leptospira species

    Get PDF
    BACKGROUND: Leptospira are the parasitic bacterial organisms associated with a broad range of mammalian hosts and are responsible for severe cases of human Leptospirosis. The epidemiology of leptospirosis is complex and dynamic. Multiple serovars have been identified, each adapted to one or more animal hosts. Adaptation is a dynamic process that changes the spatial and temporal distribution of serovars and clinical manifestations in different hosts. Serotyping based on repertoire of surface antigens is an ambiguous and artificial system of classification of leptospiral agents. Molecular typing methods for the identification of pathogenic leptospires up to individual genome species level have been highly sought after since the decipherment of whole genome sequences. Only a few resources exist for microbial genotypic data based on individual techniques such as Multiple Locus Sequence Typing (MLST), but unfortunately no such databases are existent for leptospires. RESULTS: We for the first time report development of a robust MLST method for genotyping of Leptospira. Genotyping based on DNA sequence identity of 4 housekeeping genes and 2 candidate genes was analyzed in a set of 120 strains including 41 reference strains representing different geographical areas and from different sources. Of the six selected genes, adk, icdA and secY were significantly more variable whereas the LipL32 and LipL41 coding genes and the rrs2 gene were moderately variable. The phylogenetic tree clustered the isolates according to the genome-based species. CONCLUSION: The main advantages of MLST over other typing methods for leptospires include reproducibility, robustness, consistency and portability. The genetic relatedness of the leptospires can be better studied by the MLST approach and can be used for molecular epidemiological and evolutionary studies and population genetics

    Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase

    Full text link
    We investigate the properties of strongly interacting bosons in two dimensions at zero temperature using mean-field theory, a variational Ansatz for the ground state wave function, and Monte Carlo methods. With on-site and short-range interactions a rich phase diagram is obtained. Apart from the homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density wave phases appear, that are stabilized by the finite-range interaction. Furthermore, our analysis demonstrates the existence of a supersolid phase, in which both long-range order (related to the charge-density wave) and off-diagonal long-range order coexist. We also obtain the critical exponents for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include

    Critical Behavior of the Supersolid transition in Bose-Hubbard Models

    Full text link
    We study the phase transitions of interacting bosons at zero temperature between superfluid (SF) and supersolid (SS) states. The latter are characterized by simultaneous off-diagonal long-range order and broken translational symmetry. The critical phenomena is described by a long-wavelength effective action, derived on symmetry grounds and verified by explicit calculation. We consider two types of supersolid ordering: checkerboard (X) and collinear (C), which are the simplest cases arising in two dimensions on a square lattice. We find that the SF--CSS transition is in the three-dimensional XY universality class. The SF--XSS transition exhibits non-trivial new critical behavior, and appears, within a d=3ϵd=3-\epsilon expansion to be driven generically first order by fluctuations. However, within a one--loop calculation directly in d=2d=2 a strong coupling fixed point with striking ``non-Bose liquid'' behavior is found. At special isolated multi-critical points of particle-hole symmetry, the system falls into the 3d Ising universality class.Comment: RevTeX, 24 pages, 16 figures. Also available at http://www.cip.physik.tu-muenchen.de/tumphy/d/T34/Mitarbeiter/frey.htm

    Simultaneous Diagonal and Off Diagonal Order in the Bose--Hubbard Hamiltonian

    Full text link
    The Bose-Hubbard model exhibits a rich phase diagram consisting both of insulating regimes where diagonal long range (solid) order dominates as well as conducting regimes where off diagonal long range order (superfluidity) is present. In this paper we describe the results of Quantum Monte Carlo calculations of the phase diagram, both for the hard and soft core cases, with a particular focus on the possibility of simultaneous superfluid and solid order. We also discuss the appearance of phase separation in the model. The simulations are compared with analytic calculations of the phase diagram and spin wave dispersion.Comment: 28 pages plus 24 figures, uuencoded Revtex+postscript file
    corecore